

Design and Capacities: Magnetic Fuel Modifiers

Structure

The magnetic modifier consists of a cover, magnetic system, and flow baffle inside. The cover and components are made of metal, stainless steel, or phenolic, which is highly stable and resistant to water, acids, alkalis, oils, and organic substances.

Magnetic Materials

Utilises hard magnetic material, an alloy of type α, comprising varying amounts of Fe, Ba, Ni, Al, Co, and Cu for optimal magnetic performance.

Flow Capacity

Designed to handle a maximum flow of up to 20,000 L.P.H, suitable for a wide range of industrial applications and heavy machinery.

Longevity

Engineered to function for a period of 10 years without compromising performance, ensuring long-term reliability and cost-effectiveness.

Magnetic Fuel Modifier

Performance Meets Sustainability

Magnetic cavitation technology represents responsible innovation at the intersection of operational excellence and environmental stewardship. This isn't a trade-off between performance and sustainability—it's a solution that delivers both simultaneously.

Environmental Impact

- Supports sustainability goals
- Reduces carbon footprint
- Improves air quality
- Demonstrates cleaner technology
- Enhances regulatory compliance

Economic Benefits

- Lower fuel costs
- Reduced maintenance
- Extended engine life
- Decreased downtime
- Rapid return on investment (ROI)

The technology scales from single vehicles to entire fleets, with benefits that accumulate across every operating hour. Magnetic fuel conditioning isn't just an incremental improvement—it's a fundamental rethinking of how we prepare fuel for combustion, delivering measurable value for operators while contributing to broader environmental progress.