

Return On Investment & Evaluation Procedure

Approximate Inputs from Global Bench marks:

Global Average Daily run	640 Km's
Mileage Achieved in a 12 Ton Freight Vehicle	5 K.M's Per Liter of Diesel
Daily Fuel Consumption	128 Liters
Average Fuel cost of Diesel Per Liter	USD 1.25
Approximate Journey days Per Year	225 journey days
Yearly Fuel Consumption	28,800 Liters
Yearly Fuel Cost Incurred	USD: 36,600/-
Bare minimum fuel saving @ 4%	1,152 Liters of Diesel
Amount Saved from reduced fuel usage	USD: 1,440/-
Cost of Popular Fuel Magnetizer	USD 227
R.O.I (savings / device cost)	634%

The following has not been taken into account.

- Our most basic model is designed to treat up to 300 Liters per hour. So higher the fuel consumption faster the R.O.I
- The fuel modifier supports any combustion line. Generators, Ships, Locomotives, etc.,
- Savings derived from reduced engine wear
- More distance can be covered due to faster pickup
- Older vehicles report very high savings. Usually in the range of 5 to 25%.

Evaluating Magnetic Fuel Modifier Efficiency

To accurately assess the performance of the magnetic fuel modifier, follow these structured evaluation steps.

1. Installation

Install the magnetic fuel modifier precisely between the fuel filter and the fuel pump on the vehicle's fuel line.

2. Baseline Measurement

Measure the concentration of gas components before installation at different engine speeds, including idle and higher RPMs. Take multiple measurements and calculate the average.

3. Post-Installation Testing

After 5-7 days of normal vehicle operation and at least 250 km of mileage, measure the gas component concentrations again using the same methodology.

4. Performance Evaluation

Compare the post-installation readings to the baseline measurements to accurately evaluate the device's performance in reducing gas component concentrations.

Suggested Technique for Quick Evaluation

Stationary Engine Test

Run the engine at a steady RPM and measure the time it takes to consume a fixed amount of fuel, with and without the magnetic fuel modifier installed. Observe emissions and smoke color.

External Fuel Container

Use an external mini fuel container linked to the fuel pump to supply a fixed quantity of fuel to the engine during the test.